

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde - CCENS Disciplina: $\acute{A}lgebra~I$ - Prof. Victor~Martins

Prova 2 - 28/08/2025

Nome:	Matrícula:

Questão 1: (1.5 pontos) Seja A um anel com unidade e $a \in A$. Mostre que $I = \{x \in A : x \cdot a = 0\}$ é um ideal à esquerda de A.

Questão 2: (1,5 pontos) Enuncie:

- (a) o Algoritmo da Divisão para o anel de polinômios $\mathbb{K}[x]$, onde \mathbb{K} é um corpo;
- (b) o Teorema da Fatoração Única para polinômios em $\mathbb{K}[x]$, onde \mathbb{K} é um corpo;
- (c) o Critério de Eisenstein

Questão 3: (3,0 pontos) Mostre que:

- (a) se n é um número primo, então o ideal $I = n\mathbb{Z}$ é um ideal maximal em \mathbb{Z} .
- (b) se $p(x) \in \mathbb{K}[x]$, com \mathbb{K} corpo, e p(x) é de grau 2 ou 3, então p(x) é redutível sobre \mathbb{K} se e só se existe $\alpha \in \mathbb{K}$ tal que $p(\alpha) = 0$.

Questão 4: $(1,5 \ pontos)$ Seja A um anel comutativo com unidade $1 \in A$, e seja P um ideal de A. Dizemos que P é um **ideal primo** de A se $P \neq A$ e para todos $x, y \in A$, se $x \cdot y \in P$ então $x \in P$ ou $y \in P$. Mostre que se P é um ideal primo de A e I e I são ideais de I tais que $II \subset P$, então $I \subset P$ ou I ou I comparable I denota o conjunto I denota o conj

Questão 5: (2,5 pontos) Assinale (V) para as afirmações verdadeiras e (F) para as afirmações falsas. Demonstre ou dê um contraexemplo, para justificar sua resposta.

- (a) () $8x^3 6x 1$ é irredutível sobre \mathbb{Q} .
- (b) () Em $\mathbb{Z}_8[x]$, $\overline{4}x^2 + \overline{2}x + \overline{4}$ é um divisor de zero.
- (c) () Se D é um domínio de integridade, um polinômio redutível em D[x], necessariamente, tem raiz em D.
- (d) () \mathbb{Z}_{15} possui 6 divisores de zero.
- (e) () $x^3 + 2x^2 + 10$ é irredutível sobre \mathbb{Q} .