

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Departamento de Matemática Pura e Aplicada Centro de Ciências Exatas, Naturais e da Saúde - CCENS Disciplina: $\acute{A}lgebra~I$ - Prof. Victor~Martins

Prova Final - 04/09/2025

GABARITO

Questão 1:

$$\binom{p}{k} = \frac{p!}{k! (p-k)!}$$

No produto p! aparece o fator p. Nos fatoriais do denominador (k! e (p - k)!) não aparece p, pois k . Assim, ao simplificar a fração, sobra um fator <math>p no numerador, o que mostra que $p \mid \binom{p}{k}$.

Questão 2:

(a) Em $\mathbb{Z}_6[x]$, se um polinômio f(x) é inversível, então existe g(x) tal que

$$f(x)g(x) = 1.$$

O grau do produto é gr(f) + gr(g). Para o resultado ser constante (grau 0), ambos f e g devem ter grau 0. Logo, f(x) é um polinômio **constante**.

Assim, as únicas unidades de $\mathbb{Z}_6[x]$ são as mesmas unidades de \mathbb{Z}_6 , isto é, 1 e 5.

(b) Como $2 \cdot 3 = 0$ em \mathbb{Z}_6 , temos divisores de zero. Em particular, em $\mathbb{Z}_6[x]$, $(2) \cdot (3) = 0$ (polinômios constantes), logo não é domínio de integridade.

Questão 3:

- (a) Considere $f(x) = x^4 + 1$ e o polinômio transladado $f(x+1) = (x+1)^4 + 1 = x^4 + 4x^3 + 6x^2 + 4x + 2$. Pelo critério de Eisenstein com p = 2: todos os coeficientes (exceto o líder) são divisíveis por 2, e o termo constante 2 não é divisível por 4. Logo f(x+1) é irredutível em $\mathbb{Q}[x]$, e portanto f(x) também é irredutível.
- (b) Sobre \mathbb{R} , temos

$$x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1).$$

Questão 4:

(a) Pelo algoritmo da divisão, cada classe de equivalência possui representante único do tipo $a + bx \operatorname{com} a, b \in \mathbb{R}$ (redução módulo $x^2 + 1$).

(b) Defina $\varphi : \mathbb{R}[x] \to \mathbb{C}$ por $\varphi(f(x)) = \varphi(a+bx) = a+bi$, onde a+bx é o representante da classe de f(x) no quociente do item (a). φ é um homomorfismo sobrejetor com ker $\varphi = \mathbb{R}[x](x^2+1)$. Pelo Teorema do homomorfismo,

$$\mathbb{R}[x]/\mathbb{R}[x](x^2+1) \simeq \operatorname{Im} \varphi = \mathbb{C}$$

Questão 5:

- (a) Fatora-se por x: $f(x) = x(x^2 2x + 1)$. Assim, $x \mid f(x)$.
- (b) Observando que $x^2 2x + 1 = (x 1)^2$, temos $f(x) = x(x 1)^2$. Logo

$$\frac{f(x)}{x-1} = x(x-1) = x^2 - x$$
, com resto 0.

(c) A fatoração sobre \mathbb{Q} é $f(x) = x(x-1)^2$, produto de fatores lineares racionais; portanto já está em fatores irredutíveis em $\mathbb{Q}[x]$.